Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Cell Sci ; 136(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772773

RESUMO

Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin ß-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.


Assuntos
Neoplasias da Mama , Neoplasias , Embrião de Galinha , Humanos , Animais , Feminino , Galinhas , Neoplasias/metabolismo , Transdução de Sinais , Movimento Celular , Centrossomo/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/genética
2.
Sci Robot ; 8(81): eabq4821, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647382

RESUMO

The foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations. Occlusion of the FSDSR porous membrane was monitored over 7 days in a rodent model using electrochemical impedance spectroscopy. The electrical resistance of the fibrotic capsule correlated to its increase in thickness and volume. Our FibroSensing membrane showed great sensitivity in detecting changes at the abiotic/biotic interface, such as collagen deposition and myofibroblast proliferation. The potential of the FSDSR to overcome fibrotic capsule formation and maintain constant drug dosing over time was demonstrated in silico and in vitro. Controlled closed loop release of methylene blue into agarose gels (with a comparable fold change in permeability relating to 7 and 28 days in vivo) was achieved by adjusting the magnitude and frequency of pneumatic actuations after impedance measurements by the FibroSensing membrane. By sensing fibrotic capsule formation in vivo, the FSDSR will be capable of probing and adapting to the foreign body response through dynamic actuation changes. Informed by real-time sensor signals, this device offers the potential for long-term efficacy and sustained drug dosing, even in the setting of fibrotic capsule formation.


Assuntos
Corpos Estranhos , Robótica , Humanos , Sistemas de Liberação de Medicamentos , Impedância Elétrica , Azul de Metileno
3.
J Anat ; 242(1): 64-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255526

RESUMO

Chronic total occlusions (CTOs) occur in approximately 40% of individuals with symptomatic peripheral arterial disease and are indicative of critical limb ischaemia. Currently, few medical devices can effectively treat CTOs long-term, with amputation often required. This is due to a lack of knowledge of CTO anatomy, making device design and testing difficult. This study is a proof-of-concept study, which aimed to develop a workflow for further characterising the complex multi-material anatomy of CTOs and creating 3D models of CTO components, which may be useful in producing a vascular CTO biomimetic for device testing. Here, we establish such a workflow using samples of atheromatous plaques. We focus on a high-resolution, non-destructive microcomputed tomography (µCT) technique which enables visualisation of occlusion anatomy at a greater resolution than computed tomography angiography (CTA), which is the typical modality used for CTO clinical visualisation. Four arteries (n = 2 superficial femoral; n = 2 popliteal) with evidence of atheromatous plaques were cut into 8 cm segments, which were then stained with iodine and scanned at low resolution, with calcified regions rescanned at high resolution. Resulting files were manually segmented to generate 3D models, which were then 3D printed in resin using a stereolithography printer to produce parts suitable for creating a biomimetic. In total, µCT files from three arterial segments (n = 2 high resolution, n = 1 low resolution) were deemed suitably calcified for segmentation, and thus were segmented to produce 3D models. 3D models of the arterial wall, intima and atheromatous calcium deposits from a high-resolution popliteal artery scan were successfully 3D printed at several scales. While this research is at an early stage, it holds great promise. The workflow for segmentation and 3D printing various components of an atheromatous plaque established here is replicable and uses software and equipment which are accessible to research laboratories in both academia and industry. The ability to print detailed models on a desktop 3D printer is unprecedented and can be improved further, which is promising for future development of biomimetics with multi-material detail of both soft tissue and calcified components of a vascular occlusion. Indeed, this workflow provides a solid foundation for future studies of CTO anatomy and the creation of true, multi-material CTO biomimetics. Such biomimetics may enable the development of improved interventional devices, as they would mimic the general in vivo CTO environment. As this method cannot be applied in vivo, we cannot yet produce patient-specific biomimetics, however, these analogues would still be important in device development, which would improve patient outcomes in critical limb ischaemia.


Assuntos
Biomimética , Placa Aterosclerótica , Humanos , Isquemia Crônica Crítica de Membro , Microtomografia por Raio-X , Impressão Tridimensional , Resultado do Tratamento
4.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432947

RESUMO

Analysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies. To overcome this limitation, we demonstrate a non-destructive method for high-resolution large sample imaging of the fibrous capsule surrounding human-sized implanted devices using diffusion tensor imaging (DTI). In this study we analyse the fibrous capsule surrounding two unique macroencapsulation devices that have been implanted in a porcine model for 21 days. DTI is used for 3D visualisation of the microstructural organisation and validated using the standard means of fibrous capsule investigation; histological analysis and qualitative micro computed tomography (microCT) and scanning electron microscopy (SEM) imaging. DTI demonstrated the ability to distinguish microstructural differences in the fibrous capsules surrounding two macroencapsulation devices made from different materials and with different surface topographies. DTI-derived metrics yielded insight into the microstructural organisation of both capsules which was corroborated by microCT, SEM and histology. The non-invasive characterisation of the integration of implants in the body has the potential to positively influence analysis methods in pre-clinical studies and accelerate the clinical translation of novel implantable devices.

5.
Appl Environ Microbiol ; 88(11): e0033022, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35583325

RESUMO

The alternative sigma factor B (σB) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σB loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations. In this study, we performed in vitro evolution experiments (IVEE) where L. monocytogenes was allowed to evolve over 30 days at elevated (42°C) or lower (30°C) incubation temperatures. Isolates purified throughout the IVEE revealed the emergence of sigB operon mutations at 42°C. However, at 30°C, independent alleles in the agr locus arose, resulting in the inactivation of Agr quorum sensing. Colonies of both sigB mutants and agr mutants exhibited a greyer coloration on 7-days-old agar plates than those of the parental strain. Scanning electron microscopy revealed a more complex colony architecture in the wild type than in the mutant strains. sigB mutant strains outcompeted the parental strain at 42°C but not at 30°C, while agr mutant strains showed a small increase in competitive fitness at 30°C. Analysis of 40,080 L. monocytogenes publicly available genome sequences revealed a high occurrence rate of premature stop codons in both the sigB and agrCA loci. An analysis of a local L. monocytogenes strain collection revealed 5 out of 168 strains carrying agrCA alleles. Our results suggest that the loss of σB or Agr confer an increased competitive fitness in some specific conditions and this likely contributes to the emergence of these alleles in strains of L. monocytogenes. IMPORTANCE To withstand environmental aggressions, L. monocytogenes upregulates a large regulon through the action of the alternative sigma factor B (σB). However, σB becomes detrimental for L. monocytogenes growth under mild stresses, which confer a competitive advantage to σB loss-of-function alleles. Temperatures of 42°C, a mild stress, are often employed in mutagenesis protocols of L. monocytogenes and promote the emergence of σB loss-of-function alleles in the sigB operon. In contrast, lower temperatures of 30°C promote the emergence of Agr loss-of-function alleles, a cell-cell communication mechanism in L. monocytogenes. Our findings demonstrate that loss-of-function alleles emerge spontaneously in laboratory-grown strains. These alleles rise in the population as a consequence of the trade-off between growth and survival imposed by the activation of σB in L. monocytogenes. Additionally, our results demonstrate the importance of identifying unwanted hitchhiker mutations in newly constructed mutant strains.


Assuntos
Listeria monocytogenes , Fator sigma , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Fator sigma/genética , Fator sigma/metabolismo , Temperatura
6.
Adv Sci (Weinh) ; 9(4): e2103189, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761543

RESUMO

The active stages of intestinal inflammation and the pathogenesis of ulcerative colitis are associated with superficial mucosal damage and intermittent wounding that leads to epithelial barrier defects and increased permeability. The standard therapeutic interventions for colitis have focused mainly on maintaining the remission levels of the disease. Nonetheless, such treatment strategies (using anti-inflammatory, immunomodulatory agents) do not address colitis' root cause, especially the mucosal damage and dysregulated intestinal barrier functions. Restoration of barrier functionality by mucosal healing or physical barrier protecting strategies shall be considered as an initial event in the disease suppression and progression. Herein, a biphasic hyaluronan (HA) enema suspension, naïve-HA systems that protect the dysregulated gut epithelium by decreasing the inflammation, permeability, and helping in maintaining the epithelial barrier integrity in the dextran sodium sulfate-induced colitis mice model is reported. Furthermore, HA-based system modulates intestinal epithelial junctional proteins and regulatory signaling pathways, resulting in attenuation of inflammation and mucosal protection. The results suggest that HA-based system can be delivered as an enema to act as a barrier protecting system for managing distal colonic inflammatory diseases, including colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/fisiopatologia , Colo/efeitos dos fármacos , Colo/fisiopatologia , Ácido Hialurônico/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiopatologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/provisão & distribuição , Adjuvantes Imunológicos/uso terapêutico , Animais , Modelos Animais de Doenças , Enema , Humanos , Ácido Hialurônico/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Transdução de Sinais
7.
Pharmaceutics ; 13(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959358

RESUMO

Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioactive VEGF for 4-weeks in vitro. In the present study, we describe the next step towards clinical implementation of an islet macroencapsulation device by combining a multi-scale porosity device with VEGF releasing microspheres in a rodent model to assess prevascularization over a 4-week period. An in vivo estimation of vascular volume showed a significant increase in vascularity (* p = 0.0132) surrounding the +VEGF vs. -VEGF devices, however, histological assessment of blood vessels per area revealed no significant difference. Further histological analysis revealed significant increases in blood vessel stability and maturity (** p = 0.0040) and vessel diameter size (*** p = 0.0002) surrounding the +VEGF devices. We also demonstrate that the addition of VEGF microspheres did not cause a heightened FBR. In conclusion, we demonstrate that the combination of VEGF microspheres with our multi-scale porous macroencapsulation device, can encourage the formation of significantly larger, stable, and mature blood vessels without exacerbating the FBR.

8.
J R Soc Interface ; 18(185): 20210673, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932928

RESUMO

Delivering a clinically impactful cell number is a major design challenge for cell macroencapsulation devices for Type 1 diabetes. It is important to understand the transplant site anatomy to design a device that is practical and that can achieve a sufficient cell dose. We identify the posterior rectus sheath plane as a potential implant site as it is easily accessible, can facilitate longitudinal monitoring of transplants, and can provide nutritive support for cell survival. We have investigated this space using morphomics across a representative patient cohort (642 participants) and have analysed the data in terms of gender, age and BMI. We used a shape optimization process to maximize the volume and identified that elliptical devices achieve a clinically impactful cell dose while meeting device manufacture and delivery requirements. This morphomics framework has the potential to significantly influence the design of future macroencapsulation devices to better suit the needs of patients.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Sobrevivência Celular , Humanos
9.
JVS Vasc Sci ; 2: 13-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34617054

RESUMO

BACKGROUND: Quantitative methods for evaluating microstructure of arterial specimens typically rely on histologic techniques that involve random sampling, which cannot account for the unique spatial distribution of features in three dimensions. METHODS: To overcome this limitation, we demonstrate a nondestructive method for three-dimensional imaging of intact human blood vessels using microcomputed tomography (microCT). Human artery segments were dehydrated and stained in an iodine solution then imaged with a standard laboratory microCT scanner. Image visualization and segmentation was performed using commercially available and open source software. RESULTS: Staining of cadaveric vessels with iodine enabled clear visualization of the arterial wall with microCT, preserved tissue morphology, and generated high-resolution images with a voxel size of 5.4 µm. Various components of the arterial wall were segmented using a combination of manual and automatic thresholding algorithms. CONCLUSIONS: Our approach allows for spatial mapping of human artery tissue samples that can guide targeted histologic analysis of smaller tissue segments, provide geometric data to inform finite element models, quantify degree of atherosclerosis, and help to evaluate the foreign body response to intravascular medical implants. (JVS-Vascular Science 2020;2:13-19.). CLINICAL RELEVANCE: In this article, we describe a powerful technique for whole artery analysis of pathologic human tissue specimens that provides high-resolution spatial detail regarding composition of the blood vessel wall. The protocol described here is a valuable adjunct that can be used as a research tool to inform finite element modeling of arteries, quantify pathologic response (ie, neointimal hyperplasia and vascular calcification), and evaluate the tissue/device interface of implanted medical devices.

10.
J Anat ; 239(5): 1221-1225, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633083

RESUMO

Teaching and learning anatomy by using human cadaveric specimens has been a foundation of medical and biomedical teaching for hundreds of years. Therefore, the majority of institutions that teach topographical anatomy rely on body donation programmes to provide specimens for both undergraduate and postgraduate teaching of gross anatomy. The COVID-19 pandemic has posed an unprecedented challenge to anatomy teaching because of the suspension of donor acceptance at most institutions. This was largely due to concerns about the potential transmissibility of the SARS-CoV-2 virus and the absence of data about the ability of embalming solutions to neutralise the virus. Twenty embalming solutions commonly used in institutions in the United Kingdom and Ireland were tested for their ability to neutralise SARS-CoV-2, using an established cytotoxicity assay. All embalming solutions tested neutralised SARS-CoV-2, with the majority of solutions being effective at high-working dilutions. These results suggest that successful embalming with the tested solutions can neutralise the SARS-CoV-2 virus, thereby facilitating the safe resumption of body donation programmes and cadaveric anatomy teaching.


Assuntos
COVID-19/virologia , Transmissão de Doença Infecciosa/prevenção & controle , Embalsamamento/métodos , Formaldeído/farmacologia , Pandemias , SARS-CoV-2 , Fixação de Tecidos/métodos , COVID-19/transmissão , Cadáver , Células Cultivadas , Fixadores/farmacologia , Humanos
11.
BMC Neurosci ; 22(1): 56, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525970

RESUMO

BACKGROUND: NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/ß/γ. Previous studies on cultured cells show that the short NRXN1ß primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. METHODS: In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. RESULTS: NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. CONCLUSIONS: Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/genética , Redes Reguladoras de Genes/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/fisiologia , Adolescente , Transtorno do Espectro Autista/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa/metabolismo , Adulto Jovem
12.
Commun Biol ; 4(1): 982, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408242

RESUMO

The position of abdominal organs, and mechanisms by which these are centrally connected, are currently described in peritoneal terms. As part of the peritoneal model of abdominal anatomy, there are multiple mesenteries. Recent findings point to an alternative model in which digestive organs are connected to a single mesentery. Given that direct evidence of this is currently lacking, we investigated the development and shape of the entire mesentery. Here we confirm that, within the abdomen, there is one mesentery in which all abdominal digestive organs develop and remain connected to. We show that all abdominopelvic organs are organised into two, discrete anatomical domains, the mesenteric and non-mesenteric domain. A similar organisation occurs across a range of animal species. The findings clarify the anatomical foundation of the abdomen; at the foundation level, the abdomen comprises a visceral (i.e. mesenteric) and somatic (i.e. musculoskeletal) frame. The organisation at that level is a fundamental order that explains the positional anatomy of all abdominopelvic organs, vasculature and peritoneum. Collectively, the findings provide a novel start point from which to systemically characterise the abdomen and its contents.


Assuntos
Mesentério/anatomia & histologia , Mesentério/crescimento & desenvolvimento , Humanos , Peritônio/anatomia & histologia , Peritônio/crescimento & desenvolvimento
13.
Adv Healthc Mater ; 10(14): e2100229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165264

RESUMO

Medical devices, such as silicone-based prostheses designed for soft tissue implantation, often induce a suboptimal foreign-body response which results in a hardened avascular fibrotic capsule around the device, often leading to patient discomfort or implant failure. Here, it is proposed that additive manufacturing techniques can be used to deposit durable coatings with multiscale porosity on soft tissue implant surfaces to promote optimal tissue integration. Specifically, the "liquid rope coil effect", is exploited via direct ink writing, to create a controlled macro open-pore architecture, including over highly curved surfaces, while adapting atomizing spray deposition of a silicone ink to create a microporous texture. The potential to tailor the degree of tissue integration and vascularization using these fabrication techniques is demonstrated through subdermal and submuscular implantation studies in rodent and porcine models respectively, illustrating the implant coating's potential applications in both traditional soft tissue prosthetics and active drug-eluting devices.


Assuntos
Próteses e Implantes , Silicones , Animais , Humanos , Teste de Materiais , Porosidade , Suínos
14.
Sci Transl Med ; 13(581)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597263

RESUMO

Ischemic heart disease is a leading cause of mortality due to irreversible damage to cardiac muscle. Inspired by the post-ischemic microenvironment, we devised an extracellular matrix (ECM)-mimicking hydrogel using catalyst-free click chemistry covalent bonding between two elastin-like recombinamers (ELRs). The resulting customized hydrogel included functional domains for cell adhesion and protease cleavage sites, sensitive to cleavage by matrix metalloproteases overexpressed after myocardial infarction (MI). The scaffold permitted stromal cell invasion and endothelial cell sprouting in vitro. The incidence of non-transmural infarcts has increased clinically over the past decade, and there is currently no treatment preventing further functional deterioration in the infarcted areas. Here, we have developed a clinically relevant ovine model of non-transmural infarcts induced by multiple suture ligations. Intramyocardial injections of the degradable ELRs-hydrogel led to complete functional recovery of ejection fraction 21 days after the intervention. We observed less fibrosis and more angiogenesis in the ELRs-hydrogel-treated ischemic core region compared to the untreated animals, as validated by the expression, proteomic, glycomic, and histological analyses. These findings were accompanied by enhanced preservation of GATA4+ cardiomyocytes in the border zone of the infarct. We propose that our customized ECM favors cardiomyocyte preservation in the border zone by modulating the ischemic core and a marked functional recovery. The functional benefits obtained by the timely injection of the ELRs-hydrogel in a clinically relevant MI model support the potential utility of this treatment for further clinical translation.


Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Elastina , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Proteômica , Ovinos , Remodelação Ventricular
15.
Mol Pharm ; 17(8): 3009-3023, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32628022

RESUMO

The design, synthesis, characterization, and biological activity of a series of platinum(IV) prodrugs containing the axial ligand 3-(4-phenylquinazoline-2-carboxamido)propanoate (L3) are reported. L3 is a derivative of the quinazolinecarboxamide class of ligands that binds to the translocator protein (TSPO) at the outer mitochondrial membrane. The cytotoxicities of cis,cis,trans-[Pt(NH3)2Cl2(L3)(OH)] (C-Pt1), cis,cis,trans-[Pt(NH3)2Cl2(L3)(BZ)] (C-Pt2), trans-[Pt(DACH)(OX)(L3)(OH)] (C-Pt3), and trans-[Pt(DACH)(OX)(L3)(BZ)] (C-Pt4) (DACH: R,R-diaminocyclohexane, BZ: benzoate, OX: oxalate) in MCF-7 breast cancer and noncancerous MCF-10A epithelial cells were assessed and compared with those of cisplatin, oxaliplatin, and the free ligand L3. Moreover, the cellular uptake, ROS generation, DNA damage, and the effect on the mitochondrial function, mitochondrial membrane potential, and morphology were investigated. Molecular interactions of L3 in the TSPO binding site were studied using molecular docking. The results showed that complex C-Pt1 is the most effective Pt(IV) complex and exerts a multimodal mechanism involving DNA damage, potent ROS production, loss of the mitochondrial membrane potential, and mitochondrial damage.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Membranas Mitocondriais/efeitos dos fármacos , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
J Anat ; 237(3): 393-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32628795

RESUMO

The outbreak of COVID-19, resulting from widespread transmission of the SARS-CoV-2 virus, represents one of the foremost current challenges to societies across the globe, with few areas of life remaining untouched. Here, we detail the immediate impact that COVID-19 has had on the teaching and practice of anatomy, providing specific examples of the varied responses from several UK, Irish and German universities and medical schools. Alongside significant issues for, and suspension of, body donation programmes, the widespread closure of university campuses has led to challenges in delivering anatomy education via online methods, a particular problem for a practical, experience-based subject such as anatomy. We discuss the short-term consequences of COVID-19 for body donation programmes and anatomical education, and highlight issues and challenges that will need to be addressed in the medium to long term in order to restore anatomy education and practice throughout the world.


Assuntos
Anatomia/educação , COVID-19 , Educação Médica , Humanos , Pandemias , SARS-CoV-2 , Universidades
17.
Biology (Basel) ; 9(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183469

RESUMO

The failure of the spinal cord to regenerate can be attributed both to a lack of trophic support for regenerating axons and to upregulation of inhibitory factors such as chondroitin sulphate proteoglycans including NG2 following injury. Lentiviral vector-mediated gene therapy is a possible strategy for treating spinal cord injury (SCI). This study investigated the effect of lentiviral vectors expressing Neurotrophin-3 (NT-3) and short-hairpin RNA against NG2 (NG2 sh) to enhance neurite outgrowth in in vitro and ex vivo transection injury models. Conditioned medium from cells transduced with NT-3 or shNG2 lentiviruses caused a significant increase in neurite length of primary dorsal root ganglia neurons compared to the control group in vitro. In an ex vivo organotypic slice culture (OSC) transduction with Lenti-NT-3 promoted axonal growth. Transducing OSCs with a combination of Lenti-NT-3/NG2 sh lead to a further increase in axonal growth but only in injured slices and only within the region adjacent to the site of injury. These findings suggest that the combination of lentiviral NT-3 and NG2 sh reduced NG2 levels and provided a more favourable microenvironment for neuronal regeneration after SCI. This study also shows that OSCs may be a useful platform for studying glial scarring and potential SCI treatments.

18.
J Anat ; 236(6): 996-1003, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32056204

RESUMO

Histopathology can reveal toxicant-induced changes in the structure of a tissue or organ. A prerequisite for histopathological studies is a sound knowledge of the morphology of the anatomical structure in the normal or healthy state. Zebrafish larvae can provide a tool for studies focused on hepatotoxicity at early stages of development; therefore, the fine structure of the organ should be well characterised. To date, liver structure at 72 and 120 hr post-fertilisation (hpf) has not been reported in detail and this study aimed to fill this scientific gap. A stereological approach allowed for quantitative description of the liver and revealed ultrastructural alterations occurring with time of development. These included a significant increase in the absolute volume of hepatocytes, mitochondria and rough endoplasmic reticulum (rER) during the period of study. The surface area of rER, and of outer and inner mitochondrial membranes also increased. There was no change in the absolute volume of the nuclei. This study provides a quantitative spatial and temporal framework for future research aiming to detect early developmental changes in the liver.


Assuntos
Retículo Endoplasmático Rugoso/ultraestrutura , Hepatócitos/ultraestrutura , Mitocôndrias/ultraestrutura , Animais , Microscopia Eletrônica de Transmissão , Peixe-Zebra
19.
Cells ; 9(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936142

RESUMO

Extracellular vesicles (EVs) shuttle microRNA (miRNA) throughout the circulation and are believed to represent a fingerprint of the releasing cell. We isolated and characterized serum EVs of breast tumour-bearing animals, breast cancer (BC) patients, and healthy controls. EVs were characterized using transmission electron microscopy (TEM), protein quantification, western blotting, and nanoparticle tracking analysis (NTA). Absolute quantitative (AQ)-PCR was employed to analyse EV-miR-451a expression. Isolated EVs had the appropriate morphology and size. Patient sera contained significantly more EVs than did healthy controls. In tumour-bearing animals, a correlation between serum EV number and tumour burden was observed. There was no significant relationship between EV protein yield and EV quantity determined by NTA, highlighting the requirement for direct quantification. Using AQ-PCR to relate miRNA copy number to EV yield, a significant increase in miRNA-451a copies/EV was detected in BC patient sera, suggesting potential as a novel biomarker of breast cancer.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/sangue , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética
20.
Mater Sci Eng C Mater Biol Appl ; 103: 109751, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349422

RESUMO

The limited regenerative capacity of the heart after a myocardial infarct results in remodeling processes that can progress to congestive heart failure (CHF). Several strategies including mechanical stabilization of the weakened myocardium and regenerative approaches (specifically stem cell technologies) have evolved which aim to prevent CHF. However, their final performance remains limited motivating the need for an advanced strategy with enhanced efficacy and reduced deleterious effects. An epicardial carrier device enabling a targeted application of a biomaterial-based therapy to the infarcted ventricle wall could potentially overcome the therapy and application related issues. Such a device could play a synergistic role in heart regeneration, including the provision of mechanical support to the remodeling heart wall, as well as providing a suitable environment for in situ stem cell delivery potentially promoting heart regeneration. In this study, we have developed a novel, single-stage concept to support the weakened myocardial region post-MI by applying an elastic, biodegradable patch (SPREADS) via a minimal-invasive, closed chest intervention to the epicardial heart surface. We show a significant increase in %LVEF 14 days post-treatment when GS (clinical gold standard treatment) was compared to GS + SPREADS + Gel with and without cells (p ≤ 0.001). Furthermore, we did not find a significant difference in infarct quality or blood vessel density between any of the groups which suggests that neither infarct quality nor vascularization is the mechanism of action of SPREADS. The SPREADS device could potentially be used to deliver a range of new or previously developed biomaterial hydrogels, a remarkable potential to overcome the translational hurdles associated with hydrogel delivery to the heart.


Assuntos
Implantes Absorvíveis , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Hidrogéis/administração & dosagem , Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis , Movimento Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Desenho de Equipamento , Feminino , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Pericárdio , Suínos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA